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ABSTRACT 
A near-field measurement technique for the prediction of 
asymptotic far-field antenna patterns from data obtained 
from a modified cylindrical, or plane-polar, near-field 
measurement system is presented.  This technique utilises 
a simple change in facility alignment to enable near-field 
data to be taken over the surface of a conceptual right 
cone [1, 2], or right conic frustum [3, 4] thereby allowing 
existing facilities to characterise wide-angle antenna 
performance in situations where hitherto they would 
perhaps have been limited by truncation. 

This paper aims to introduce the measurement technique, 
describe the novel probe-corrected near-field to far-field 
transform algorithm which is based upon a cylindrical 
mode expansion of the measured fields before presenting 
preliminary results of both computational electromagnetic 
simulations and actual range measurements.  As this 
paper recounts the progress of ongoing research, it 
concludes with a discussion of the remaining outstanding 
issues and presents an overview of the planned future 
work. 
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1. Introduction 

It is well known that far-field antenna parameters such as 
pattern, gain, directivity, beamwidth, etc., can be derived 
from near-field measurements.  For such parameters, 
which are not obtained directly from measurements made 
in the near-field, a transformation from one surface to 
another is necessitated.  This transformation, of 
monochromatic but otherwise arbitrary waves can be 
accomplished efficiently by representing the field as a 
summation of any elementary wave solution of Maxwell’s 
equations.  Here, the coefficients to these solutions are 
determined by matching the fields on the surface on 
which the fields are known and by using mode 
orthogonality.  Solving this modal expansion for the fields 
over a spherical surface of infinite radius centred about 
the radiator results in the far-field pattern.  Generally, this 
is most effective when selecting a modal basis that is 
commensurate with the measurement geometry, i.e. by 
utilising plane-waves, cylindrical-waves, or spherical-
waves respectively for the case where the measurements 
are taken over planar, cylindrical or spherical surfaces.  
Although complete solutions of the complex vector wave 
equation are available for certain other systems of co-

ordinates, until relatively recently, these have received 
comparatively little attention in the published literature. 

The utility and viability of any measurement system 
depends not only on the availability of the requisite 
probe-compensating near-field to far-field transformation, 
but also on the ease with which a sufficiently accurate 
robotic positioning sub-system can be constructed.  The 
planar, cylindrical and spherical geometries have the 
inherent advantage that their respective robotic 
subsystems can be readily realised from combinations of 
readily available rotation, and/or linear translation stages 
at an economical price.  Since it is possible to construct a 
right conical measurement system from any existing 
cylindrical system by merely tilting the linear stage (or 
alternatively by tilting the rotation axis), then this is also 
true for the conical case.  Thus, the conical system can be 
conveniently fabricated using existing commercial off the 
shelf (COTS) positioning stages providing a solution for 
the characterisation of a class of antennas that currently 
can only be effectively served with spherical near-field 
scanning. 

2. Overview of Measurement Technique & Transform 

Conceptually, the right conical measurement system is 
perhaps most closely related to the well documented, well 
understood, cylindrical near-field scanning technique.  
Only here, the axis of rotation of the antenna under test 
(AUT) and the linear translation stage which caries the 
probe, are no longer constrained to be exactly parallel 
with one another.  By taking samples incrementally on a 
raster grid by varying the azimuthal angle and linear 
displacement, the near electric-field can be sampled over 
the surface of a right cone.  This is illustrated 
schematically in Figure 1 below. 

  
Figure 1 – Conical (left) & Frustum (right) 

Measurement Co-ordinate Systems. 

If the near-field probe is rotated through 90° about its axis 
of rotation and this process is repeated, two orthogonal 



near electric field components can be acquired and it is 
from these that the far-field pattern can be obtained.  
Previous transformation algorithms have been based on 
spherical, or plane wave expansions.  In contrast, the 
near-field to far-field transform considered here is based 
upon a cylindrical mode expansion [5].  However, one 
assumption that has been introduced is that the probe is 
aligned such that it’s axis of rotation is orthogonal to, and 
intersects with, the azimuthal (i.e. rotation) axis of the 
AUT.  This has the benefit that the conventional 
cylindrical transmission matrix formula can be retained 
and when inverted, used to compensate the conical 
measurements without introducing any tangible practical 
limitations into the measurement process. 

To provide an illustration of how this new transform 
works, let us consider obtaining the far-field pattern of a 
given radiator from cylindrical near electric field data 
sampled using an infinitesimal Hertzian dipole probe.  
This last restriction is introduced purely to simplify and 
ease the pedagogy and is not a fundamental constraint of 
the measurement technique.  In summary, the 
electromagnetic fields outside an arbitrary test antenna 
radiating into free space can be expanded into a set of 
orthogonal cylindrical mode coefficients.  These 
eigenfunctions can then be used to obtain the electric and 
magnetic fields everywhere in space outside of this 
conceptual cylindrical surface.  Conveniently, these can 
be used to obtain explicit expressions for the asymptotic 
far-field pattern.  When expressed in component from, the 
two sets of orthogonal cylindrical mode coefficients can 
be obtained from [5], 
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Where the Fourier variable can take on all real values 
from negative to positive infinity and the modal index can 
take on all integer values from negative to positive 
infinity.  Here, φ and z denote the azimuthal and linear 
cylindrical co-ordinates respectively, ρ0 is the radius of 
the measurement cylinder, k0 is the free-space wave 
number, γ is the Fourier variable which is related to κ 
through , and  is the Hankel 
function of the first kind.  is the derivative of the 
Hankel function of the first kind which is defined using 
the foll i e su  [6ow ng op rator bstitution ], 

 

Here, z has been used to denote the argument of the 
function.  Finally, Hankel functions of the first kind of 
negative order can be calculated from Hankel functions of 
positive order from e y,  the following id ntit
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Once the cylindrical mode coefficients have been 
determined, the asymptotic far-field pattern can be 
obtained from a simple summation f modes as,  o
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Here, and as per the usual convention, the unimportant 
far-field spherical phase factor and inverse r term have 
been suppressed.  In practice the number of cylindrical 
mode coefficients can be truncated to a finite number 
which equates approximately to half wavelength sampling 
over the surface of a conceptual cylinder that is centred 
on the origin of the measurement co-ordinate system, and 
that encloses the majority of the current sources.  Thus, 
the maximum mode index N is given by 10 
where rt is the maximum radial extent (MRE) [7].  Also, 
the Fourier variable γ can be limited to ±k0 (equivalently, 
where κ = 0) as these are the highest order propagating 
modes.  As the sample spacing, i.e. resolution, is 
determined from the maximum value of γ we can write 
that ⁄ 2⁄  where λ denotes the wavelength.   

Thus, for the conical case, the angular sample spacing is 
held fixed for all values of z at an amount determined by 
the size of the MRE, with samples being taken at every 
half wavelength along the linear scan axis, that is over the 
surface of the cone (i.e. not along the rotation axis where 
the two amounts differ be a factor of the cosine of the half 
cone angle). 

From the analysis on the cylindrical case, it is clear that 
the cylindrical mode coefficients of the measured data 
depend upon the measurement radii in a fundamental 
way.  Thus, unlike the conventional cylindrical case, it is 
not possible to represent the measured fields using just 
two sets of cylindrical mode coefficients; instead, two sets 
must be used for every value of ρ0.  In practice, this 
equates to computing a complete set of cylindrical mode 
coefficients for every ring of near-field data as this is the 
only case for which the value of ρ0 will be held fixed.  
Thus, by computing the complete far-field pattern for 
each radial cut sequentially and then using the principle of 
linear superposition, the complete far-field pattern of the 
antenna can be constructed by essentially integrating over 
the set of near-field rings.  Although not discussed herein, 
the probe pattern correction that is inevitably required 
when taking real near-field data can be incorporated into 



this in a straightforward, but rigorous, way by using the 
usual inversion of the cylindrical transmission formula. 

3. Preliminary Simulated Results 

In order that the transformation algorithm outlined above 
could be verified, cylindrical and conical near-field 
measurement systems were simulated.  The purpose of 
this was to allow the far-field patterns as obtained from 
the new transform algorithm to be compared with the far-
field pattern as obtained directly from the modelled data.  
To this end, a proprietary three dimensional, full wave 
computational electromagnetic (CEM) solver employing 
the finite difference time-domain (FDTD) method was 
used to solve for the electric and magnetic fields in a 
problem space encapsulating a radiator.  In this case, a 
simple open-ended rectangular waveguide (OEWG) 
section, excited by the fundamental TE10 mode was 
modelled.  As the amount of computer memory required 
to solve problems such as this is closely related to the 
electrical size of the problem space, the Kirchhoff-
Huygens principle, which is in essence a direct integration 
of Maxwell’s equations, was used to calculate the radiated 
fields outside of the problem space, c.f. the Stratton-Chu 
solution [8].  Using this method, almost any form of near-
field antenna measurement system irrespective of how 
large, could be simulated with a high degree of accuracy. 

Figure 2 below contains the tangential Eφ and Ez 
amplitude field components over the surface of a cylinder 
shown in a three-dimensional “virtual reality” space.  
Figure 3 contains equivalent plots showing similar field 
components plotted over the surface of a truncated cone.  
In each of these simulations the main-beam of the antenna 
was aligned with the z-axis of the plot, i.e. through the 
side of the cylinder or frustum. 

 
Figure 2 – Simulated Cylindrical Near-Field Data. 

 
Figure 3 – Simulated Conical Near-Field Data. 

These simulated near-field measurements were then 
transformed to the true far-field using the algorithm 
described above and whereupon they could be compared 
with the predicted ideal patterns.  The equivalent far-field 

patterns can be found presented in the form of false-
colour, i.e. checkerboard, intensity plots. 

 
Figure 4 – Far-field Pattern From Cylindrical Data. 

 
Figure 5 – Far-field Pattern From Conical Data. 

 
Figure 6 – Far-field Pattern From Theoretical Model. 

From inspection, the degree of agreement attained is 
encouraging with differences primarily resulting from the 
varying degrees of truncation within the simulated near-
field data sets, which is evident in the broadening of the 
pattern in the elevation plane, the loss of field at large 
elevation angles, and the variation in the level of the 
“cross-polar” lobes – the far field pattern from the 
theoretical model being the only pattern free of 
truncation.  As these preliminary results were viewed to 
be encouraging, particularly the agreement attained 
between the cylindrical and conical patterns, the work 
progressed to actual range measurements which are 
detailed in the sections below. 

4. Preliminary Measured Results 

The goal of this work was limited to demonstrating proof 
of concept where the success of this measurement 
technique was assessed by evaluating the repeatability 
between successive, preliminary, measurements where a 
single parametric change had been introduced.  To this 
end, actual range measurements were taken using an NSI-
200V-5x5 planar/cylindrical near-field measurement 
system with a precision tilting fixture that allowed for 0° 
or 30° half cone-angle, which is the angle between the 
local gravity vector and the linear axis.  The AUT was an 
X-band standard gain horn (SGH) and multi-frequency 
data was taken from 8 to 12 GHz using an Agilent PNA-
X based RF subsystem.  The acquisitions were made 
using standard NSI 2000 cylindrical data acquisition 
software.  This conical near-field system can be seen 
presented in Figure 7 below.  Three different 
measurement cases were examined: 

• Case 1 consisted of a conventional cylindrical near-
field measurement and this was to be used as the 



baseline measurement against which other test cases 
could be compared. 

• Case 2 involved tilting the vertical axis of the 
scanner through 30° so that an equatorial conical 
near-field measurement was made.  This case was 
selected so that the basic conical near-field to far-
field transform could be verified against the baseline 
cylindrical case. 

• Case 3 (illustrated in Figure 7) was intended to take 
advantage of the greater elevation coverage in order 
to improve the wide-out pattern coverage.  In this 
configuration, the AUT was tilted up by 30° so that 
the boresight of the antenna was pointing towards 
the top of the conical measurement so that truncation 
would be lessened. 

The goal of this measurement campaign was to obtain 
far-field patterns from cases 2 and 3 that agreed with 
those obtained from the baseline, i.e. Case 1. 

 
Figure 7 – Conical Near-Field Measurement System. 

The customised NSI-200V-5x5 planar / cylindrical 
measurement system, shown in Figure 7, was used to take 
near-field data for these three configurations.  Plots of the 
measured amplitude of the principal polarisation can be 
seen presented as two-dimensional false-colour intensity 
plots in Figures 8, 9, and 10 below. 

Since a cylindrical measurement can be considered to be a 
special case of the conical case, or vice-versa, the first, 
and possibly the simplest test, was to compare the conical 
transform against a reference cylindrical near-field to far-
field transform to process the baseline Case 1 data set.  
Here, the well regarded National Institute of Standards 
and Technology (NIST) cylindrical near-field to far-field 
transform was used as the reference transform. 

 
Figure 8 – Near-Field Amplitude Pattern of Case 1. 

 
Figure 9 – Near-Field Amplitude Pattern of Case 2. 

 
Figure 10 – Near-Field Amplitude Pattern of Case 3. 

Figure 11 contains plots of the elevation cardinal cuts of 
the far-field antenna patterns which were obtained from 
the NIST transform with (red trace) and without (blue 
trace) probe pattern correction.  Similar plots (which use 
the same colour convention) can be seen which were 
obtained from the novel conical near-field to far-field 
transform which can be seen to be in encouragingly good 
agreement with those patterns obtained from the NIST, 
i.e. reference, transform.  Although not shown, the 



agreement obtained between the respective azimuth 
cardinal cuts was equally good. 

 
Figure 11 – Far-field Elevation Cuts, With & Without 
Probe Pattern Correction From The NIST Transform 

(Left) & The Novel Transform (Right). 

As is evident from inspection of the plots of the near-field 
measured patterns, the data sets are all truncated to some 
degree in the nominally vertical linear axis which will 
inevitably lead to some leakage in the far-field pattern.  
Firstly, and as is the case with planar scanning, the first 
order truncation effect will result in the error within the 
pattern being effectively infinitely large outside of some 
angular limit which can be approximated by geometry 
(c.f. an infinite frequency, geometrical optics 
approximation).  Secondly, the holistic nature of the 
relationship that exists between the near-field and far-
field regions will result in the introduction of some ripple 
into the far-field pattern within even this angular range.  
Thus, when plotting these far-field patterns, fields outside 
of the first order truncation range have been omitted from 
the far-field false-colour plots, as evidenced by the white 
areas.  Here, Figure 12 contains the far-field pattern from 
Case 1 – cylindrical measurement; Figure 13 contains the 
far-field pattern from Case 2 – conical measurement, 
whilst Figure 14 contains the far-field pattern obtained 
from Case 3 – conical measurement with tilted AUT.  As 
Case 3 involves the measurement of an AUT which is not 
aligned with the axes of the range, i.e. the peak of the 
pattern is located at Az = 0°, El = 30°, a vector isometric 
rotation was utilised to rotate the antenna pattern so that it 
could be compared with the other, nominally aligned 
cases and the results of this can be found presented in 
Figure 15.  This constitutes a full rotation of both the 
pattern and the polarisation so any differences that remain 
are not an artefact of any particular polarisation basis used 
to plot the patterns.  A detailed description of this 
correction technique can be found in [9]. 

Here, it is evident that Figures 12, 13, and 15 are in 
encouraging agreement with one another giving further 
confidence that the near-field to far-field transform and 
probe pattern compensation are working correctly.  It is 
worth noting that as the effects of the spatial filtering of 
the near-field probe depend upon the orientation of the 
probe and the AUT, Case 3 constitutes a stringent test for 
the transformation process as the patterns can only agree 
if the near-field to far-field transform, probe pattern 

correction algorithm, probe pattern, and vector rotation 
are all implemented correctly.  It is worth noting that due 
to the pattern rotation, the high elevation antenna pattern 
has not been filtered, and that the sharp lobe located at Az 
= 0°, El = 60° is the original pole in the far-field pattern, 
and as such this anomaly should be ignored.  A similar 
comment is true for the lobe at Az =±180°, El =-60° 
which corresponds to the other pole. 
 

 
Figure 12 – Conventional Cylindrical Measurement. 

 
Figure 13 – Conventional Conical Measurement. 

 
Figure 14 – Conical Measurement – tilted AUT. 

 
Figure 15 – Conical Measurement – Re-aligned AUT. 

Since the success of this measurement technique is being 
assessed by evaluating the repeatability between 
successive measurements where a single parametric 
change has been introduced, the measurements must be 
very strictly controlled as any additional changes that are 
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introduced between successive measurements will affect 
the results.  Unfortunately, as these measurements were 
preliminary in nature, they were not conducted within a 
screened anechoic environment and as such, the multi-
path within the measurements did differ between each 
measurement configuration which degraded the 
agreement attained.  This was particularly crucial as both 
the orientation of the AUT and the probe change between 
measurements.  Crucially, the radii of the cylindrical, and 
particularly the conical, measurements was not accurately 
determined during these measurements which is the most 
likely cause of the small discrepancies in the location of 
the sidelobes in the alignment corrected Case 3 far-field 
patterns, i.e. Figure 15. 

5. Discussion 

Ideally, the boresight of the AUT would be orientated so 
that it points directly through the tip of the cone, i.e. in a 
polar mode (c.f. the equatorial mode measurements 
discussed herein) so that the undesirable effects of 
truncation are minimised.  In practice however, any 
imperfection in the alignment of the conical system could 
result in the introduction of significant errors in the 
corresponding far-field pattern.  This is a consequence of 
the fact that, naturally, the boresight direction of the 
AUT, and thus the region of greatest field intensity will 
be directed towards the tip of the cone, which is where the 
set of radial conical linear cuts intersect and where the 
alignment issues are most critical.  Obviously, this can be 
eased by orientating the AUT so that it “looks” out 
through the side of the cone thus avoiding the tip region, 
but this is perhaps an inelegant solution.  One alternative 
that has been used with considerable success in the 
closely related poly-planar measurement technique is to 
us a flat-topped measurement surface.  For the poly-
planar case a truncated pyramid, i.e. a pyramidal frustum, 
was employed to resolve this difficulty.  Here however, 
an analogous conical frustum would be used which is a 
frustum created by slicing the top off a right cone where 
the cut is made parallel to the base of the cone.  Here, the 
cap that is used to replace the tip of the conic section 
constitutes a conventional plane-polar measurement.  It is 
intended to displace the intersection between the 
individual cuts from the region of greatest field intensity 
to a less sensitive location.  Thus, in the event that the 
adjacent scans do not intersect perfectly, the resulting 
positional error will impact less on the far field pattern. 

It is often preferable when taking near-field antenna 
measurements that a measurement geometry be selected 
which is commensurate with the geometry of the AUT. 
Thus, this technique would be particularly well suited to 
the characterisation of base-station antennas, or arrays 
installed behind tangent ogive radomes, such as those 
commonly employed with nose-mounted fire-control 
radars which is an electrically large system that often 

presents the experimentalist with both electromagnetic 
and mechanical challenges. 

6. Conclusions and Future Work 

This paper has recounted the use of a cylindrical mode 
expansion and an inversion of the cylindrical transmission 
formula as the basis of a novel probe-pattern corrected 
conical near-field to far-field transform for use with a 
conical near-field antenna measurement system where the 
validity of this novel approach has been demonstrated 
through numerical simulation and empirical 
measurement. 

Finally, it should be noted that this paper recounts the 
progress of an ongoing research study.  Consequently, 
several issues remain to be addressed and the planned 
future work is to include obtaining verification of the 
success of the right conic frustum measurement technique 
through further numerical simulation and actual range 
measurement. 
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